B. Jack

PRELIMINARY DRAINAGE ANALYSIS FOR

Clear Lake Subdivision Keizer, Oregon

Owner: Trademark Enterprises PO Box 5248 Salem, Or 97304

February 28, 2024

1155 13th Street SE Salem OR 97302 www.mtengineering.net

PHONE:	(503) 363-9227
FAX:	(503) 364-1260
EMAIL:	BJack@mtengineering.net

7611

CONTENTS

Introduction1
Existing Conditions1
Developed Conditions
Explanation of Design2
Stormwater Analysis
Water Quality
Water Quantity
Operations and Maintenance
Design Summary4
Conclusion

Appendix A: Maps

Appendix E	: NRCS	Web S	oil Survey
------------	--------	-------	------------

Appendix C: Infiltration Test Results

Appendix D: Water Quality Hydrographs

Appendix E: Water Quantity Hydrographs

INTRODUCTION

The Clear Lake project is a proposed 20-lot subdivision with a mix of public and private access located at 1135 Clear Lake Rd NE. The parcel of land to be developed is Tax Lot 5300 of Marion County Assessor's Map 06 3W 23AC and is approximately 1.7-acres in size. A vicinity map is included in Appendix A and an aerial image is shown below.

Figure 1. Project Site

Green Stormwater Infrastructure (GSI) to the Maximum Extent Feasible (MEF) will be used for the newly developed areas per city of Keizer Design Standards. All facilities will be constructed to meet the city of Keizer standards.

EXISTING CONDITIONS

The 1.7-acre project site is rectangular in shape. Surface conditions consist of short grass, a few maple and cedar trees spread across the property, and an existing structure that will be removed during this project. There are no identified wetlands or sensitive areas located on the property. The existing site is very flat with less than a 1-foot relief across the property and a maximum elevation of 179 feet. With

this topography and that of the surrounding area no additional runoff is expected to reach the site. The abutting properties are zoned single-family residential and urban transition. The soil map from the NRCS Web Soil Survey in Appendix B shows that this location is comprised of Amity silt loam and Concord silt loam which are both classified as hydrologic soil groups C/D. The hydrologic soil group will be treated as C which as directed by the city of Keizer Design Standards correlates to a curve number of 72.

The infiltration rate was tested at the proposed facility location using the open pit falling head procedure. This test found an average rate of 9.84 inches per hour. The design infiltration rate will apply a safety factor of 2 to the tested average and therefore be treated as 4.92 in/hr. Infiltration test results are contained in Appendix C.

DEVELOPED CONDITIONS

This project will require the extension of Barbara Avenue NE and Mikayla Road N, as well as the construction of a new accessway. Each of the 20 lots will add new hard surface in the form of driveways, roofs, and patios. The average lot size for the project is 2,489 sq-ft and based on the impervious area map shown in Appendix A, the new hard surface is approximately 1,400 sq-ft per lot. Therefore, the total impervious area for the site is 50,190 sq-ft, leaving 25,375 sq-ft of pervious area. In this analysis impervious area will have a curve number of 98 and pervious area will be classified as open space with >75% grass cover and have a curve number of 74. Weighting by area the composite curve number for this site is 90.

EXPLANATION OF DESIGN

Vertically, the proposed infiltration rain garden is designed with the top of storage 2 feet above the growing media, 12 inches of growing media, 3 inches of separation rock, and 4 feet of 30% void drain rock. This facility will provide water quality treatment by allowing for the removal of pollutants through sedimentation, adsorption onto surrounding vegetation, filtration, and biological uptake. The north side of the facility is designed with a 3:1 slope and the remaining three sides utilize a retaining wall. The retaining wall is required to provide the necessary storage volume and prevent the water depth during the water quality event from exceeding 4 inches. Storms beyond the water quality event will utilize a 24-inch beehive inlet, with its rim 18 inches above the growing media, to bypass treatment and enter the drain rock through an 8-inch perforated pipe. A second beehive inlet with its rim set 2 feet above the growing media will serve as the emergency overflow. The facility has about a half foot of freeboard between the rim of the emergency overflow and the rim of the lowest inlet catch basin. The emergency overflow connects with an existing stormwater manhole to the south. A 42-inch-tall chain link fence will surround the facility to provide fall protection and perimeter security. This analysis considers a 2,379 sq-ft rain garden for water quality and quantity requirements.

STORMWATER ANALYSIS

The city of Keizer standards require that facilities with an infiltration rate greater than 2 in/hr treat the water quality storm and retain up to the 100-yr storm event. Stormwater analysis is performed using HydroCAD 10.20 and based on the region, these storms were modeled as type IA 24-hr. Smaller storm events are analyzed to show the range of performance but do not affect the design.

Storm Event	Intensity (in/hr)			
Water Quality	1.38			
5-yr	2.70			
10-yr	3.20			
25-yr	3.60			
50-yr	4.10			
100-yr	4.40			

Table 1. Keizer Design Storms

WATER QUALITY

In this analysis the primary outflow shows water passing through the growing medium and the secondary outflow represents water passing through the beehive inlet. For this storm event the water may not exceed 4 inches in depth and the top of the growing media is at an elevation of 174.50 ft. As directed by the city of Keizer the infiltration rate through the growing medium was modeled at 2 in/hr.

Figure 2. Water passing through growing medium.

This graph shows the maximum water height was 0.12 feet above the soil and the beehive was not used during the water quality event. More information regarding this hydrograph can be found in Appendix D.

WATER QUANTITY

In this rain garden the rock gallery is intended to retain and infiltrate all runoff up to and including the 100-year event. Table 2 lists the water surface elevation in the facility for each storm event. The top of the drain rock is at an elevation of 173.25 ft.

	Water Surface Elevation in			
Storm Event	Drain Rock (ft)			
5-yr	169.27			
10-yr	169.29			
25-yr	169.92			
50-yr	171.73			
100-yr	173.06			

Table 2. Water Quantity

Table 2 notes that across all design storms, the facility will have the required storage to retain and the surface area to infiltrate runoff. The hydrographs used to create this summary can be found in Appendix E.

OPERATIONS AND MAINTENANCE

This facility will handle runoff from a public street and therefore the city of Keizer will be responsible for all maintenance.

DESIGN SUMMARY

This analysis shows that a surface area of 2,379 sq-ft is sufficient to manage the water quality event and facilitate enough infiltration for all design storms.

Location	Elevation (ft)				
Top of Facility	176.50				
Top of Beehive	175.00				
Top of Growing Media	174.50				
Top of Separation Rock	173.50				
Top of Drain Rock	173.25				
Bottom of Drain Rock	169.25				

Table 3. Design Summary

CONCLUSION

This facility should be adequate to meet both water quality and quantity design requirements as shown. If there are any questions, please contact Brenden Jack at BJack@mtengineering.net or Natalie Janney at NJanney@mtengineering.net.

APPENDIX A: MAPS

计数字分子 网络索马斯特尔马尔美国美国东西的东西 有一点

06 3W 23AC **KEIZER**

MARION COUNTY, OREGON

SW1/4 NE1/4 SEC23 T6S R3W W.M.

SCALE 1" = 100'

<u>LEGEND</u>

LINE TYPES

Taxlot Boundary

Road Right-of-Way

Railroad Right-of-Way

Private Road ROW Subdivision/Plat Bndry

Waterline - Taxlot Bndry

+ 1/16TH Section Cor.

1/4 Section Cor.

Waterline - Non Bndry

Historical Boundary

Railroad Centerline

Taxcode Line

0 0 0 0 0 0 0

Map Boundary

Easement

NUMBERS

CORNER TYPES

OLC Corner

Tax Code Number

Acreage 0.25 AC

All acres listed are Net Acres, excluding any portions of the taxlot within public ROWs

NOTES

Tick Marks: A tick mark in the road indicates that the labeled dimension extends into the public ROW

DISCLAIMER: THIS MAP WAS PREPARED FOR ASSESSMENT PURPOSES ONLY

FOR ADDITIONAL MAPS VISIT OUR WEBSITE AT www.co.marion.or.us

PLOT DATE: 10/16/2020

KEIZER 06 3W 23AC

ABBREVIATIONS

A.C		ASPHALTIC CONCRETE	L		LENGTH, LINE
ACMP		ALUMINIZED CMP	L.P		LIGHT POLE
ASSY.	·	ASSEMBLY	Μ		METER, MAIN
B.O		BLOW OFF	M.H		MANHOLE
B.F.V.	·	BUTTERFLY VALVE	MTL		METAL
C & G		CURB & GUTTER	O.H		OVERHEAD
CATV		CABLE TELEVISION	PC		POINT OF CURVE
C.B.		CATCH BASIN	PCC		POINT OF CONTINUING CURVE
C.B.C	.0.	CATCH BASIN CLEANOUT	PED.		PEDESTAL
CBI		CATCH BASIN INLET	PRC		POINT OF REVERSE CURVE
CCR			(PROP		
			PT		
CONC	• +				
CONS	·		PVI		
D.I		DUCTILE IRON	P.P		
DIA.		DIAMETER	P.L		PROPERTY LINE
DWG_		DRAWING	R		RADIUS
EASM	Т	EASEMENT	R		RIM
E.G		EXIST. GRADE / GROUND	RD		ROOF DRAIN
EOP, I	E.P	EDGE OF PAVEMENT	R.O.W		RIGHT-OF-WAY
ELEC.		ELECTRIC	SAN.S. o	r S.S.	SANITARY SEWER
ELEV.	or EL.	ELEVATION	S		SLOPE
EX. or	· EXIST	EXISTING	S.Q.F		STORMWATER QUALITY FACILITY
F.D.C.		FIRE DEPT. CONNECTION	STĂ		STATION
FT		FEET	STD.		STANDARD
F.F		FINISH FLOOR	STL.		STEEL
F.G.		FINISH GRADE	STM.DRN	I. or S.	.D. STORM DRAIN
F.H.		FIRE HYDRANT	SVC		SERVICE
F M		FORCE MAIN	SW		SIDEWALK
	or GTR	GUTTER			
GVI.			TEI		
			ПЕ		
INU/ c	nr I_		U.G		
1140.0	л <u> </u>		W M		
SVM	IBOI	S	vv•ı		
511	IDUL	5			
<u>EX.</u>	PROP	<u>_</u>	<u>EX.</u>	PROP	<u>.</u>
\ominus	\odot	BLOW OFF ASSY.	S	S	MANHOLE SAN. SEWER
пт	m			õ	
ШШ	Ш	CATCH BASIN	U	\mathbb{O}	MANHOLE STORM DRAIN
		CATCH BASIN CLEANOUT	(2)	2	2' DIA. C.O. / M.H.
		CATCH BASIN INLET) T	Ē	MANHOLE TELEPHONE
A		CATV PED. / BOX	\odot	() ()	MANHOLE WATER
	•				REDUCER / INCREASER
4Q2	~ ● ≻	FIRE HYDRANT	\square		TRAFFIC PED. / BOX
\bigcirc	۲	GAS LOCATION MARKER	С		UTILITY / POWER POLE
\bowtie	Η	GAS VALVE			WATER METER
\square		MAIL BOX	\otimes	Θ	WATER VALVE
	>	- CABLE TELEVISION - CENTERLINE - DITCH C.L. - ELECTRICAL LINE - GAS MAIN		> > >	 SANITARY SEWER EXIST. SANITARY SEWER CONST. STORM DRAIN EXIST. STORM DRAIN CONST. WATER MAIN EXIST.
		- TELEPHONE LINE			- WATER MAIN CONST.

CLEARLAKE

SEC. 23, T. 6 S., R. 3 W., W.M. **1135 CLEAR LAKE ROAD NE CITY OF KEIZER** MARION COUNTY, OREGON 97303

P.O. BOX 5248

TECH MULTI Ø₽ S *SCALE: 1" = 30'* Ηd S EXISTING CONDITIONS PLAN Щ 1 Ū FICATION VS TO BE RAWINGS OTES T OVER SENTAT INS & NO EDENCE REPRES EX. SSMH RIM 180.378 INV. 165.48 (S) INV. 165.13 (E) INV. 165.38 (W) EX. SDMH RIM 180.278 INV. 170.88 24" PVC (S) INV. 170.88 36" PVC (W) DIMENSION PRECEI IO CHANG OR REPF MADE TC WIT AUTHOR DES _ E<u>X. UG. G</u>A<u>S.</u> 23 -> ---_____ - SIGN-STOP Desigr Drawr Check Issue Scale: EX. SDMH ____RIM 180.156 INV. 173.86 CPP (S) INV. 175.76 12" CPP (E) 9654 EXPIRES: 06-30-2025 JOB # 7611 102

_ ___

BARBARA AVENUE NORTHEAST

Drawing is NOT to scale

Ζ

1

Δ

PARCEL SIZE:	
TOTAL AREA	1.70 Ac.
DEVELOPABLE AREA	1.63 Ac.
NUMBER OF LOTS	21
DENSITY	12.88 UNITS/Ac.
LARGEST LOT	6012 S.F.
SMALLEST LOT	1692 S.F.
AVERAGE	2489 S.F.

BARBARA AVENUE NORTHEAST

APPENDIX B: NRCS WEB SOIL SURVEY

A PROPERTY OF A PROPERTY OF

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP L	EGEND		MAP INFORMATION
Area of In	terest (AOI)	300	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils		۵	Stony Spot	
30115	Soil Map Unit Polygons	03	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
_	Soil Map Unit Lines	\$	Wet Spot	Entergoment of more beyond the code of morning can eque
	Soil Map Unit Points	\triangle	Other	misunderstanding of the detail of mapping and accuracy of soil
Special	Point Features		Special Line Features	line placement. The maps do not show the small areas of
(O)	Blowout	Water Fea	itures	scale.
X	Borrow Pit	\sim	Streams and Canals	
×	Clay Spot	Transport	a tion Rails	Please rely on the bar scale on each map sheet for map measurements.
\diamond	Closed Depression	~	Interstate Highways	Course of Many Natural Decourses Conservation Comise
X	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
000	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
٨.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts
<u>مل</u> د	Marsh or swamp	in the second se	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
~	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\vee	Rock Outcrop			Soil Survey Area: Marion County Area, Oregon
+	Saline Spot			Survey Area Data: Version 21, Sep 8, 2023
	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Aug 1 2018—Aug
à	Slide or Slip			31, 2018
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Am	Amity silt loam	0.8	50.9%
Со	Concord silt loam	0.8	49.1%
Totals for Area of Interest		1.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Marion County Area, Oregon

Am—Amity silt loam

Map Unit Setting

National map unit symbol: 24ns Elevation: 120 to 350 feet Mean annual precipitation: 40 to 45 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 190 to 210 days Farmland classification: Prime farmland if drained

Map Unit Composition

Amity and similar soils: 85 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Amity

Setting

Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Mixed silty alluvium

Typical profile

H1 - 0 to 24 inches: silt loam H2 - 24 to 37 inches: silty clay loam H3 - 37 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 12.0 inches)

Interpretive groups

Land capability classification (irrigated): 2w Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C/D Ecological site: R002XC007OR - Valley Swale Group Forage suitability group: Somewhat Poorly Drained (G002XY005OR) Other vegetative classification: Somewhat Poorly Drained (G002XY005OR) Hydric soil rating: No

Minor Components

Concord

Percent of map unit: 5 percent Landform: Terraces

Custom Soil Resource Report

Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Poorly Drained (G002XY006OR) Hydric soil rating: Yes

Co—Concord silt loam

Map Unit Setting

National map unit symbol: 24p2 Elevation: 120 to 350 feet Mean annual precipitation: 40 to 45 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 190 to 210 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Concord and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Concord

Setting

Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Parent material: Mixed mineralogy alluvium

Typical profile

H1 - 0 to 15 inches: silt loam *H2 - 15 to 29 inches:* silty clay *H3 - 29 to 60 inches:* silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: High (about 11.4 inches)

Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Ecological site: R002XC007OR - Valley Swale Group *Forage suitability group:* Poorly Drained (G002XY006OR) *Other vegetative classification:* Poorly Drained (G002XY006OR) *Hydric soil rating:* Yes

Minor Components

Dayton

Percent of map unit: 10 percent Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Poorly Drained (G002XY006OR) Hydric soil rating: Yes

APPENDIX C: INFILTRATION TEST RESULTS

Clear Lake Road

Near Clear Lake Road, center of site frontage

Infiltration Test

Test No.1

November 11th, 2023

Time	Time	Water	Infiltration	Infiltration	Infiltration	Infiltration	Cumilative
(min)	Difference	Level	(feet)	(inches)	Rate	Rate	Infiltration
	(min)	(feet)			In/Min	In/hr	(inches)
C		0.8					
Aller	4	a warney	0.1	1.2	0.3	18	1.2
4		0.9					
Contraction (Section	4	DALT MOUS	0.1	1.2	0.3	18	2.4
8		1	0.05	0.0	0.15	0	2
DIRE REAL	4	1.05	0.05	0.8	0.15	9	3
12	1	1.05	0.06	0.72	0.18	10.8	3.72
16	4	1 11	0.00	0.72	0.10	10.0	5174
Contraction of the	4		0.05	0.6	0.15	9	4.32
20		1.16				1.1.1.1.1.1.1	
#3 - Will	10		0.12	1.44	0.144	8.64	5.76
30		1.28					
	10		0.12	1.44	0.144	8.64	7.2
40		1.4		S			
1.20104.0	10		0.11	1.32	0.132	7.92	8.52
50	10	1.51	0.11	1.22	0 1 2 2	7.02	0.94
60	10	1.62	0.11	1.32	0.132	7.92	9.04
00	10	1.02					
70	10		1	1000			NO DE LES
Section Section	10		0	0	0	0	0
80	1.				1. A 1. A 1.		
WHEN STOR	10	123123	0	0	0	0	0
90				2			
ALC: NO. 3	10	Service From	0	0	0	0	0
100		and the second second					
W 2 20	20		0	0	0	0	0
120		Contraction in a					
A DOWN OF A		and the second sec					

Average Rate

9.84

Design Rate

5.0

in/hr

9

24 Hour Design Rate

216 in

APPENDIX D: WATER QUALITY HYDROGRAPHS

S. HARDET WARRANT

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	Water Quality	Type IA 24-hr		Default	24.00	1	1.38	2

Rainfall Events Listing (selected events)

Summary for Subcatchment 1S: Proposed Conditions

Runoff = 0.230 cfs @ 7.98 hrs, Volume= 0.085 af, Depth= 0.59" Routed to Pond 1P : Growing Media

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type IA 24-hr Water Quality Rainfall=1.38"

A	rea (sf)	CN	Description					
	50,190	98	Paved park	Paved parking, HSG C				
	25,375	74	>75% Gras	s cover, Go	od, HSG C			
	75,565	90	Weighted A	verage				
	25,375		33.58% Pervious Area					
	50,190		66.42% Imp	pervious Are	ea			
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	:) (ft/sec)	(cfs)				
5.0					Direct Entry,			
					-			

Subcatchment 1S: Proposed Conditions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

0

Summary for Pond 1P: Growing Media

Inflow Area	a =	1.735 ac,	66.4	2% Imper	vious,	Inflow	Depth =	0.59	9" for	Water	Quality e	event
Inflow	=	0.230 cfs	@	7.98 hrs,	Volum	e=	0.08	5 af				
Outflow	=	0.100 cfs	@	8.77 hrs,	Volum	e=	0.08	5 af,	Atten=	57%,	Lag= 47.	8 min
Primary	=	0.100 cfs	@	8.77 hrs,	Volum	e=	0.08	5 af				
Routed	to Pond	2P:Rock	Galle	ery								
Secondary	' =	0.000 cfs	@	0.00 hrs,	Volum	e=	0.00	0 af				
Routed	to Pond	2P : Rock	Galle	ery								

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 174.62' @ 8.77 hrs Surf.Area= 2,157 sf Storage= 258 cf

Plug-Flow detention time= 14.6 min calculated for 0.085 af (100% of inflow) Center-of-Mass det. time= 14.7 min (838.2 - 823.5)

Volume	Invert	Avail.Stor	age Storage D	escription	
#1	174.50'	4,52	2 cf Custom S	Stage Data (Pris	smatic) Listed below (Recalc)
Elevatio	on Su et)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
174.5 176.5	50 50	2,143 2,379	0 4,522	0 4,522	
Device	Routing	Invert	Outlet Devices		
#1 #2	Primary Secondary	174.50' 176.00'	2.000 in/hr Exfi 8.00" Horiz. Or Limited to weir	iltration over S ifice/Grate C flow at low hea	urface area = 0.600 ds
Primary	OutFlow M	ax=0.100 cfs	@ 8.77 hrs HW	=174.62' (Fre	e Discharge)

1=Exfiltration (Exfiltration Controls 0.100 cfs)

Secondary OutFlow Max=0.000 cfs @ 0.00 hrs HW=174.50' (Free Discharge) 2=Orifice/Grate (Controls 0.000 cfs)

Pond 1P: Growing Media

Summary for Pond 2P: Rock Gallery

Inflow Area	ι =	1.735 ac, 66.4	42% Impervious,	Inflow Depth :	= 0.59" fo	or Water Quality event
Inflow	=	0.100 cfs @	8.77 hrs, Volum	ie= 0.0	85 af	
Outflow	=	0.100 cfs @	8.80 hrs, Volum	ie= 0.0	85 af, Atter	n= 0%, Lag= 1.7 min
Discarded	=	0.100 cfs @	8.80 hrs, Volum	ie= 0.0	85 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 169.26' @ 8.80 hrs Surf.Area= 2,379 sf Storage= 11 cf

Plug-Flow detention time= 1.8 min calculated for 0.085 af (100% of inflow) Center-of-Mass det. time= 1.8 min (839.9 - 838.2)

Volume	Invert	Avail.Sto	rage Storag	e Description				
#1	169.25'	2,8	55 cf Custo 9,516	m Stage Data (Pris cf Overall x 30.0%	matic) Listed below (Recalc) Voids			
Elevatio (feet	n Si t)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
169.2	5	2,379	0	0				
173.2	5	2,379	9,516	9,516				
Device	Routing	Invert	Outlet Devi	ces				
#1	Discarded	169.25'	4.920 in/hr	Exfiltration over Su	rface area			
D'	Constant Out Flow May 0.074 of @ 0.00 has UNA 400.001 (For a Discharge)							

Discarded OutFlow Max=0.271 cfs @ 8.80 hrs HW=169.26' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.271 cfs) Pond 2P: Rock Gallery

APPENDIX E: WATER QUANTITY HYDROGRAPHS

S. HARDET WARRANT

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	5 Year	Type IA 24-hr		Default	24.00	1	2.70	2
2	10 Year	Type IA 24-hr		Default	24.00	1	3.20	2
3	25 Year	Type IA 24-hr		Default	24.00	1	3.60	2
4	50 Year	Type IA 24-hr		Default	24.00	1	4.10	2
5	100 Year	Type IA 24-hr		Default	24.00	1	4.40	2

Rainfall Events Listing (selected events)

Summary for Subcatchment 1S: Proposed Conditions

Runoff = 0.755 cfs @ 7.92 hrs, Volume= 0.247 af, Depth= 1.71" Routed to Pond 1P : Growing Media

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type IA 24-hr 5 Year Rainfall=2.70"

Ar	ea (sf)	CN	Description					
Ę	50,190	98	Paved park	Paved parking, HSG C				
	25,375	74	>75% Gras	s cover, Go	bod, HSG C			
	75,565	90	Weighted A	verage				
	25,375		33.58% Pervious Area					
Ę	50,190		66.42% Imp	pervious Are	ea			
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.0					Direct Entry,			
					-			

Subcatchment 1S: Proposed Conditions

Summary for Pond 1P: Growing Media

Inflow Area = 1.735 ac, 66.42% Impervious, Inflow Depth = 1.71" for 5 Year event Inflow 0.755 cfs @ 7.92 hrs. Volume= 0.247 af = Outflow 0.131 cfs @ 15.28 hrs, Volume= 0.247 af, Atten= 83%, Lag= 441.5 min = 0.108 cfs @ 15.28 hrs, Volume= Primary = 0.240 af Routed to Pond 2P : Rock Gallery Secondary = 0.023 cfs @ 15.28 hrs, Volume= 0.007 af Routed to Pond 2P : Rock Gallery

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 176.02' @ 15.28 hrs Surf.Area= 2,323 sf Storage= 3,399 cf

Plug-Flow detention time= 356.3 min calculated for 0.247 af (100% of inflow) Center-of-Mass det. time= 356.6 min (1,116.0 - 759.5)

Volume	Invert	Avail.Stora	age Storage D	escription	
#1	174.50'	4,522	2 cf Custom S	tage Data (Pr	ismatic) Listed below (Recalc)
Elevatio	on Su et)	rf.Area (sq-ft) (Inc.Store cubic-feet)	Cum.Store (cubic-feet)	
174.5 176.5	50 50	2,143 2,379	0 4,522	0 4,522	
Device	Routing	Invert	Outlet Devices		
#1 #2	Primary Secondary	174.50' 176.00'	2.000 in/hr Exfi 8.00" Horiz. Ori Limited to weir f	Itration over a fice/Grate (low at low hea	Surface area C= 0.600 ads
Primary	OutFlow Ma	ax=0.108 cfs (@ 15.28 hrs HW	/=176.02' (F	ree Discharge)

1=Exfiltration (Exfiltration Controls 0.108 cfs)

Secondary OutFlow Max=0.023 cfs @ 15.28 hrs HW=176.02' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.023 cfs @ 0.49 fps)

Pond 1P: Growing Media

Summary for Pond 2P: Rock Gallery

Inflow Area	I =	1.735 ac, 66	.42% Impervious,	Inflow Depth =	1.71" fo	or 5 Year event
Inflow	=	0.131 cfs @	15.28 hrs, Volum	e= 0.247	7 af	
Outflow	=	0.131 cfs @	15.31 hrs, Volum	e= 0.247	7 af, Atten	n= 0%, Lag= 1.9 min
Discarded	=	0.131 cfs @	15.31 hrs, Volum	e= 0.247	7 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 169.27' @ 15.31 hrs Surf.Area= 2,379 sf Storage= 14 cf

Plug-Flow detention time= 1.8 min calculated for 0.247 af (100% of inflow) Center-of-Mass det. time= 1.8 min (1,117.8 - 1,116.0)

Volume	Invert	Avail.Sto	rage Storage I	Storage Description				
#1	169.25'	2,85	55 cf Custom 9,516 cf	Stage Data (P Overall x 30.0	rismatic) Listed below (Recalc) % Voids			
Elevatior (feet	n Su :)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
169.25 173.25	5 5	2,379 2,379	0 9,516	0 9,516				
Device	Routing	Invert	Outlet Devices	6				
#1	Discarded	169.25'	4.920 in/hr Ex	filtration over	Surface area			
Discardo	Discorded OutElow Max-0.271 efe @ 15.31 hrs. HW -160.27' (Erec Discharge)							

Discarded OutFlow Max=0.271 cfs @ 15.31 hrs HW=169.27' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.271 cfs) Pond 2P: Rock Gallery

Summary for Subcatchment 1S: Proposed Conditions

Runoff = 0.971 cfs @ 7.91 hrs, Volume= 0.313 af, Depth= 2.17" Routed to Pond 1P : Growing Media

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 Year Rainfall=3.20"

A	rea (sf)	CN	Description				
	50,190	98	Paved park	ing, HSG C	C		
	25,375	74	>75% Gras	s cover, Go	bood, HSG C		
	75,565	90	Weighted Average				
	25,375	5 33.58% Pervious Area					
	50,190		66.42% Imp	pervious Are	rea		
Tc	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)			
5.0					Direct Entry,		

Subcatchment 1S: Proposed Conditions

Summary for Pond 1P: Growing Media

Inflow Area = 1.735 ac, 66.42% Impervious, Inflow Depth = 2.17" for 10 Year event Inflow 0.971 cfs @ 7.91 hrs. Volume= 0.313 af = Outflow 9.86 hrs, Volume= 0.313 af, Atten= 74%, Lag= 116.8 min 0.249 cfs @ = 9.86 hrs, Volume= Primary = 0.108 cfs @ 0.250 af Routed to Pond 2P : Rock Gallery Secondary = 0.142 cfs @ 9.86 hrs, Volume= 0.063 af Routed to Pond 2P : Rock Gallery

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 176.08' @ 9.86 hrs Surf.Area= 2,329 sf Storage= 3,522 cf

Plug-Flow detention time= 309.0 min calculated for 0.313 af (100% of inflow) Center-of-Mass det. time= 309.3 min (1,055.7 - 746.4)

Volume	Invert	Avail.Stora	age Storage D	escription	
#1	174.50'	4,522	2 cf Custom S	tage Data (Pris	smatic) Listed below (Recalc)
Elevatio	on Su et)	rf.Area (sq-ft) (Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
174.5 176.5	50 50	2,143 2,379	0 4,522	0 4,522	
Device	Routing	Invert	Outlet Devices		
#1 #2	Primary Secondary	174.50' 176.00'	2.000 in/hr Exfi 8.00" Horiz. Ori Limited to weir f	ltration over S fice/Grate C low at low hea	urface area = 0.600 ds
Primary	OutFlow Ma	ax=0.108 cfs	@ 9.86 hrs HW=	=176.08' (Fre	e Discharge)

1=Exfiltration (Exfiltration Controls 0.108 cfs)

Secondary OutFlow Max=0.141 cfs @ 9.86 hrs HW=176.08' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.141 cfs @ 0.90 fps) Hydrograph Hydrograph Inflow Area=1.735 ac Peak Elev=176.08' Storage=3,522 cf July de to July de

Pond 1P: Growing Media

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Summary for Pond 2P: Rock Gallery

Inflow Area	ι =	1.735 ac, 66.4	12% Impervious,	Inflow Depth =	2.17" for 10	Year event
Inflow	=	0.249 cfs @	9.86 hrs, Volume	e= 0.313	8 af	
Outflow	=	0.249 cfs @	9.89 hrs, Volume	∋= 0.313	af, Atten= 0%	, Lag= 1.9 min
Discarded	=	0.249 cfs @	9.89 hrs, Volume	€= 0.313	8 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 169.29' @ 9.89 hrs Surf.Area= 2,379 sf Storage= 26 cf

Plug-Flow detention time= 1.8 min calculated for 0.313 af (100% of inflow) Center-of-Mass det. time= 1.8 min (1,057.5 - 1,055.7)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	169.25'	2,85	55 cf Custon 9,516 c	n Stage Data (Prismatic) Listed below (f Overall x 30.0% Voids	(Recalc)
Elevatio (fee	on Su et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
169.2	25	2,379	0	0	
173.2	25	2,379	9,516	9,516	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	169.25'	4.920 in/hr E	xfiltration over Surface area	
D'		Mar. 0.074		/	

Discarded OutFlow Max=0.271 cfs @ 9.89 hrs HW=169.29' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.271 cfs)

Pond 2P: Rock Gallery

Summary for Subcatchment 1S: Proposed Conditions

Runoff = 1.146 cfs @ 7.90 hrs, Volume= 0.367 af, Depth= 2.54" Routed to Pond 1P : Growing Media

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 Year Rainfall=3.60"

A	rea (sf)	CN	Description						
	50,190	98	Paved park	ing, HSG C	C				
	25,375	74	>75% Gras	s cover, Go	ood, HSG C				
	75,565	90	Weighted A	verage					
	25,375		33.58% Per	33.58% Pervious Area					
	50,190	66.42% Impervious Area							
Тс	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)					
5.0					Direct Entry,				
					-				

Subcatchment 1S: Proposed Conditions

Summary for Pond 1P: Growing Media

Inflow Area	a =	1.735 ac	, 66.4	2% Imper	vious,	Inflow	Depth =	2.54	" for	25 Ye	ar ever	nt
Inflow	=	1.146 cfs	@	7.90 hrs,	Volume	e=	0.367	' af				
Outflow	=	0.415 cfs	@	8.83 hrs,	Volume	e=	0.367	′af, /	Atten=	64%,	Lag= 5	55.8 min
Primary	=	0.108 cfs	@	8.83 hrs,	Volume	e=	0.255	af			-	
Routed	to Pond	2P:Rocl	c Galle	ery								
Secondary	=	0.307 cfs	@	8.83 hrs,	Volume	e=	0.112	af				
Routed	to Pond	2P : Rocl	c Galle	ery								

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 176.13' @ 8.83 hrs Surf.Area= 2,335 sf Storage= 3,640 cf

Plug-Flow detention time= 271.9 min calculated for 0.367 af (100% of inflow) Center-of-Mass det. time= 271.8 min (1,009.8 - 738.0)

Volume	Invert	Avail.Stor	age Storage D	escription	
#1	174.50'	4,52	2 cf Custom S	tage Data (Pris	smatic) Listed below (Recalc)
Elevatio (fee	on Su et)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
174.5 176.5	50 50	2,143 2,379	0 4,522	0 4,522	
Device	Routing	Invert	Outlet Devices		
#1 #2	Primary Secondary	174.50' 176.00'	2.000 in/hr Exfi 8.00" Horiz. Or Limited to weir	Itration over S ifice/Grate C flow at low hea	Furface area = 0.600 ds
Primary	OutFlow Ma	ax=0.108 cfs	@ 8.83 hrs HW	=176.13' (Fre	e Discharge)

1=Exfiltration (Exfiltration Controls 0.108 cfs)

Secondary OutFlow Max=0.306 cfs @ 8.83 hrs HW=176.13' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.306 cfs @ 1.16 fps)

Pond 1P: Growing Media

Summary for Pond 2P: Rock Gallery

Inflow Area	ι =	1.735 ac, 66.4	12% Impervious,	Inflow Depth =	2.54" for	25 Year event
Inflow	=	0.415 cfs @	8.83 hrs, Volum	e= 0.367	7 af	
Outflow	=	0.271 cfs @	8.50 hrs, Volum	e= 0.367	7 af, Atten=	35%, Lag= 0.0 min
Discarded	=	0.271 cfs @	8.50 hrs, Volum	e= 0.367	7 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 169.92' @ 10.35 hrs Surf.Area= 2,379 sf Storage= 476 cf

Plug-Flow detention time= 6.9 min calculated for 0.367 af (100% of inflow) Center-of-Mass det. time= 7.0 min (1,016.8 - 1,009.8)

Volume	Invert	Avail.Sto	rage Storag	e Description	
#1	169.25'	2,85	55 cf Custo 9,516	m Stage Data (Prismatic) Listed be cf Overall x 30.0% Voids	elow (Recalc)
Elevatior (feet	n Su)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
169.25	5	2,379	0	0	
173.25	5	2,379	9,516	9,516	
Device	Routing	Invert	Outlet Device	ces	
#1	Discarded	169.25	4.920 in/hr	Exfiltration over Surface area	
Disconde		May 0.074		LIN 100 201 (Erec Discharge)	

Discarded OutFlow Max=0.271 cfs @ 8.50 hrs HW=169.29' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.271 cfs) Pond 2P: Rock Gallery

Summary for Subcatchment 1S: Proposed Conditions

Runoff = 1.367 cfs @ 7.90 hrs, Volume= 0.436 af, Depth= 3.01" Routed to Pond 1P : Growing Media

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type IA 24-hr 50 Year Rainfall=4.10"

Are	a (sf)	CN	Description			
50	0,190	98	Paved park	ing, HSG C	C	
2	5,375	74	>75% Gras	s cover, Go	ood, HSG C	
7	5,565	90	Weighted A	verage		
2	5,375		33.58% Per	vious Area	а	
50	0,190		66.42% Imp	pervious Are	rea	
Tc L	_ength	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry,	
					-	

Subcatchment 1S: Proposed Conditions

Summary for Pond 1P: Growing Media

Inflow Area	a =	1.735 ac	, 66.4	12% Imper	vious,	Inflow	Depth =	3.01	" for	50 Ye	ar eve	nt
Inflow	=	1.367 cfs	@	7.90 hrs,	Volum	e=	0.436	5 af				
Outflow	=	0.730 cfs	@	8.24 hrs,	Volum	e=	0.436	5 af,	Atten=	47%,	Lag=	20.5 min
Primary	=	0.109 cfs	@	8.24 hrs,	Volum	e=	0.260) af			-	
Routed	to Pond	2P:Rock	Galle	ery								
Secondary	=	0.621 cfs	@	8.24 hrs,	Volum	e=	0.176	5 af				
Routed	to Pond	2P:Rock	Galle	ery								

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 176.20' @ 8.24 hrs Surf.Area= 2,344 sf Storage= 3,818 cf

Plug-Flow detention time= 235.0 min calculated for 0.435 af (100% of inflow) Center-of-Mass det. time= 235.4 min (964.6 - 729.2)

Volume	Invert	Avail.Stor	age Storage D	escription	
#1	174.50'	4,52	2 cf Custom S	tage Data (Pri	smatic) Listed below (Recalc)
Elevatio	on Su et)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
174.5 176.5	50 50	2,143 2,379	0 4,522	0 4,522	
Device	Routing	Invert	Outlet Devices		
#1 #2	Primary Secondary	174.50' 176.00'	2.000 in/hr Exfi 8.00" Horiz. Or Limited to weir	Itration over S ifice/Grate C flow at low hea	Furface area = 0.600 ds
Primary	OutFlow Ma	ax=0.109 cfs	@ 8.24 hrs HW	=176.20' (Fre	e Discharge)

1=Exfiltration (Exfiltration Controls 0.109 cfs)

Secondary OutFlow Max=0.620 cfs @ 8.24 hrs HW=176.20' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.620 cfs @ 1.47 fps)

Pond 1P: Growing Media

Summary for Pond 2P: Rock Gallery

Inflow Area	I =	1.735 ac, 66.4	2% Impervious, Ir	flow Depth = 3.01	for 50 Year event
Inflow	=	0.730 cfs @	8.24 hrs, Volume=	= 0.436 af	
Outflow	=	0.271 cfs @	8.05 hrs, Volume=	= 0.436 af,	Atten= 63%, Lag= 0.0 min
Discarded	=	0.271 cfs @	8.05 hrs, Volume=	= 0.436 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 171.73' @ 11.53 hrs Surf.Area= 2,379 sf Storage= 1,771 cf

Plug-Flow detention time= 44.7 min calculated for 0.435 af (100% of inflow) Center-of-Mass det. time= 44.6 min (1,009.3 - 964.6)

Volume	Invert	Avail.Sto	rage Stora	ge Description	
#1	169.25'	2,8	55 cf Cust 9,516	om Stage Data (Pr s cf Overall x 30.09	ismatic) Listed below (Recalc) % Voids
Elevatio	on S	urf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(Cubic-feet)	
169.2	25	2,379	0	0	
173.2	25	2,379	9,516	9,516	
Device	Routing	Invert	Outlet Dev	ices	
#1	Discarded	169.25'	4.920 in/hr	Exfiltration over	Surface area
.		NA 0.074			

Discarded OutFlow Max=0.271 cfs @ 8.05 hrs HW=169.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.271 cfs) Pond 2P: Rock Gallery

Summary for Subcatchment 1S: Proposed Conditions

Runoff = 1.500 cfs @ 7.89 hrs, Volume= 0.477 af, Depth= 3.30" Routed to Pond 1P : Growing Media

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 Year Rainfall=4.40"

A	rea (sf)	CN	Description					
	50,190	98	Paved park	ing, HSG C	C			
	25,375	74	>75% Grass cover, Good, HSG C					
	75,565	75,565 90 Weighted Average						
25,375 33.58% Pervious Area					а			
50,190			66.42% Impervious Area					
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
5.0					Direct Entry,			
					-			

Subcatchment 1S: Proposed Conditions

Summary for Pond 1P: Growing Media

Inflow Area =		1.735 ac,	66.4	2% Imper	vious,	Inflow	Depth =	3.30)" for	100 Y	'ear eve	nt
Inflow	=	1.500 cfs	@	7.89 hrs,	Volum	e=	0.47	7 af				
Outflow	=	0.993 cfs	@	8.12 hrs,	Volum	e=	0.47	7 af,	Atten=	34%,	Lag= 1	3.8 min
Primary	=	0.109 cfs	@	8.12 hrs,	Volum	e=	0.26	2 af			C C	
Routed	to Pond	2P:Rock	Galle	ery								
Secondary	=	0.884 cfs	@	8.12 hrs,	Volum	e=	0.21	5 af				
Routed	to Pond	2P : Rock	Galle	ery								

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 176.28' @ 8.12 hrs Surf.Area= 2,353 sf Storage= 3,993 cf

Plug-Flow detention time= 217.8 min calculated for 0.476 af (100% of inflow) Center-of-Mass det. time= 218.3 min (943.0 - 724.7)

Volume	Invert	Avail.Stora	age Storage D	escription	
#1	174.50'	4,52	2 cf Custom S	tage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee	on Su et)	rf.Area (sq-ft) (Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
174.5 176.5	50 50	2,143 2,379	0 4,522	0 4,522	
Device	Routing	Invert	Outlet Devices		
#1 #2	Primary Secondary	174.50' 176.00'	2.000 in/hr Exfi 8.00" Horiz. Ori Limited to weir f	Itration over S fice/Grate C low at low hea	urface area = 0.600 ds
Primary	OutFlow Ma	ax=0.109 cfs	@ 8.12 hrs HW:	=176.27' (Fre	e Discharge)

1=Exfiltration (Exfiltration Controls 0.109 cfs)

Secondary OutFlow Max=0.880 cfs @ 8.12 hrs HW=176.27' (Free Discharge) 2=Orifice/Grate (Orifice Controls 0.880 cfs @ 2.52 fps)

Pond 1P: Growing Media

Summary for Pond 2P: Rock Gallery

Inflow Area	1 =	1.735 ac, 66.4	12% Impervious,	Inflow Depth =	3.30" for	100 Year event
Inflow	=	0.993 cfs @	8.12 hrs, Volum	e= 0.477	7 af	
Outflow	=	0.271 cfs @	7.95 hrs, Volum	e= 0.477	7 af, Atten=	73%, Lag= 0.0 min
Discarded	=	0.271 cfs @	7.95 hrs, Volum	e= 0.477	7 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 173.06' @ 11.95 hrs Surf.Area= 2,379 sf Storage= 2,717 cf

Plug-Flow detention time= 86.4 min calculated for 0.476 af (100% of inflow) Center-of-Mass det. time= 86.2 min (1,029.2 - 943.0)

Volume	Invert	Avail.Sto	rage Stora	ge Description	
#1	169.25'	2,8	55 cf Cust 9,516	om Stage Data (Pr 5 cf Overall x 30.0	ismatic) Listed below (Recalc) % Voids
Elevatio	on Si	urf.Area	Inc.Store	Cum.Store	
(iee	i)	(sq-it)	(cubic-leet)	(Cubic-leet)	
169.2	25	2,379	0	0	
173.2	25	2,379	9,516	9,516	
Device	Routing	Invert	Outlet Dev	vices	
#1	Discarded	169.25'	4.920 in/h	r Exfiltration over	Surface area
D ' I					

Discarded OutFlow Max=0.271 cfs @ 7.95 hrs HW=169.32' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.271 cfs) Pond 2P: Rock Gallery

